If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+8t=60
We move all terms to the left:
3t^2+8t-(60)=0
a = 3; b = 8; c = -60;
Δ = b2-4ac
Δ = 82-4·3·(-60)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-28}{2*3}=\frac{-36}{6} =-6 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+28}{2*3}=\frac{20}{6} =3+1/3 $
| 90°+x+2x+3x=180° | | 5x+13=91 | | 8y+5y=7 | | X^2(2^x)-4(2^x)=0 | | X^22^x-4(2^x)=0 | | (X^2)(2^x)-4(2^x)=0 | | 4b-8-b=10b-b | | x.3=18 | | 3^(x^2)-42=1/(3^x) | | 15x=15*3 | | 3x2+92x-7200=0 | | 6d=2/1 | | w+0.02w=9.69 | | 8+ww=12 | | -1/2+3/7y=-1/3 | | 4∣y+1∣−16=0 | | 15+9v=60 | | n/7+77=82 | | 4X=-2y+14 | | u/4+16=18 | | -6×+10=4x+12+8 | | q-23/9=6 | | 2=m/7-3 | | 3(x+9)=16 | | j/4-9=3 | | j/4-9=1 | | 19=u/3+16 | | 4y−6y−24=30 | | 5+3x=10-6x | | 7=g-6/7 | | -3=−9x | | X+0.20x=24,500 |